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Assignment Logistics

● This assignment is due Friday, Feb 19th at class time, with the same late 
policy as usual.

● You’re also welcome to work in pairs on this assignment.
● We strongly recommend that you finish the midterm before starting this 

assignment!
● Don’t worry, we designed this assignment to be lighter than the others!
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Part 1: Big-O Analysis

● In this part, we’ve written 13 C++ functions for you to analyze.
● We’ve also given you access to a runtime plotter that displays the 

relationship between n, the size of the input, and the execution time of the 
function calls. 

● With these two things, all you need to do is determine the runtime of each of 
the 13 functions, and log your answers in BigOAnswers.txt



Part 1: Big-O Analysis

Let’s review some Big-O Basics!



Part 1: Big-O Analysis

● Big-O notation is a way of quantifying the rate at which some quantity 
grows.

● We can use it to roughly estimate how well our program scales with 
increasingly large input.

● Let’s see some examples!
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they are still constant.
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Other functions have runtimes that 
grow LINEARLY with the size of the 
input.
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However, a function’s runtime is not 
always determined by the number of 
functions it calls.
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Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.
● Nested code multiplies its runtime.
● Recursive function:

○ How many calls are there (in terms of the size of input N) * how much work is done per call
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Part 1: Big-O Analysis

A few notes:

● You’ll probably want to read up on the documentation for the various 
functions you find in the code. Ensure you know the runtimes of each, and 
don’t take anything for granted! 

● Just in case it wasn’t clear, there’s no need to write/modify any code in this 
part of the assignment!

● With respect to runtime plots, expect somewhat noisy data plots for 
small-input levels. Additionally, you might see odd spikes at certain points in 
your graphs -- this is probably because your computer had other things 
going on in the background!



Questions about Part 1?
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● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.

● Let’s say that again to be clear -- starting with a 
Vector<Vector<DataPoint>>, your job is to merge the internal sorted 
Vector<DataPoint>’s into a single sorted Vector<DataPoint>.

● For savy algorithmic fiends, what you’ll really be doing is implementing the 
merge part of the recursive sorting algorithm mergesort! Cool beans!

● For those interested, a DataPoint is a little struct that looks like this:



Part 2: Combine

Here’s how we want you to approach this problem:



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

[Above: A collection of sorted sequences being regrouped into 
2 collections of sequences of size roughly k/2.]
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Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

2. Call your combine() function recursively on both of the Vector’s

As you can see, each call returns a Vector<DataPoint>’s that is sorted!

3. Use the merge() algorithm from class to combine these two sorted 
sequences into a single sorted sequence, which you’ll return!



Part 2: Combine

At a high level, here’s a visual of what’s going on:
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Part 2: Combine

Some implementation notes:

● You’ll want this code to run in O(n log k) time, where n is the number of 
elements total and k is the number of sequences originally. Think about why 
this is the case.

● If you use the merge() routine from class, recall that removing from the 
front of a Vector does not run in O(1) time. You’re going to need to figure 
out a workaround that preserves the required runtime.
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Part 2: Combine

A few more implementation notes:

● Just to be clear -- you’ll be determining ordering based on the weight field of 
the DataPoint struct. Ties can be broken arbitrarily.

● The sequences you merge together might not be the same size -- some 
might even be empty! Your code should correctly combine them all.

● Before you submit, run the “Time Tests” portion of the GUI and verify visually 
that your code runs in O(n log k) time. After completing part 1 of this 
assignment, we think you’ll know how to identify this runtime on a plot!



Any Questions?


