
YEAH A5

Bag’O Big-O



Assignment Logistics

● This assignment is due Friday, Feb 19th at class time, with the same late 
policy as usual.



Assignment Logistics

● This assignment is due Friday, Feb 19th at class time, with the same late 
policy as usual.

● You’re also welcome to work in pairs on this assignment.



Assignment Logistics

● This assignment is due Friday, Feb 19th at class time, with the same late 
policy as usual.

● You’re also welcome to work in pairs on this assignment.
● We strongly recommend that you finish the midterm before starting this 

assignment!



Assignment Logistics

● This assignment is due Friday, Feb 19th at class time, with the same late 
policy as usual.

● You’re also welcome to work in pairs on this assignment.
● We strongly recommend that you finish the midterm before starting this 

assignment!
● Don’t worry, we designed this assignment to be lighter than the others!



Assignment Overview

This assignment has two parts:



Assignment Overview

This assignment has two parts:

1. Big-O Analysis



Assignment Overview

This assignment has two parts:

1. Big-O Analysis
2. Recursive Combine



Part 1: Big-O Analysis

● In this part, we’ve written 13 C++ functions for you to analyze. 



Part 1: Big-O Analysis

● In this part, we’ve written 13 C++ functions for you to analyze.
● We’ve also given you access to a runtime plotter that displays the 

relationship between n, the size of the input, and the execution time of the 
function calls. 



Part 1: Big-O Analysis

● In this part, we’ve written 13 C++ functions for you to analyze.
● We’ve also given you access to a runtime plotter that displays the 

relationship between n, the size of the input, and the execution time of the 
function calls. 

● With these two things, all you need to do is determine the runtime of each of 
the 13 functions, and log your answers in BigOAnswers.txt



Part 1: Big-O Analysis

Let’s review some Big-O Basics!



Part 1: Big-O Analysis

● Big-O notation is a way of quantifying the rate at which some quantity 
grows.

● We can use it to roughly estimate how well our program scales with 
increasingly large input.

● Let’s see some examples!



Part 1: Big-O Analysis - O(1)

Some functions exhibit behaviors 
independent of the size of their inputs.



Part 1: Big-O Analysis - O(1)

They can do a lot of work, but in Big-O 
they are still constant.



Part 1: Big-O Analysis - O(N)

Other functions have runtimes that 
grow LINEARLY with the size of the 
input.



Part 1: Big-O Analysis - O(N)

Again, constants don’t matter.



Part 1: Big-O Analysis - O(N^2)

Runtimes can be quadratic, and 
potentially much higher.



Part 1: Big-O Analysis - O(N^2)

However, a function’s runtime is not 
always determined by the number of 
functions it calls.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.
● Nested code multiplies its runtime.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.
● Nested code multiplies its runtime.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.
● Nested code multiplies its runtime.



Part 1: Big-O Analysis

Some general rules:

● Two parallel blocks of code add their runtime.
● Nested code multiplies its runtime.
● Recursive function:

○ How many calls are there (in terms of the size of input N) * how much work is done per call



Part 1: Big-O Analysis

A few notes:



Part 1: Big-O Analysis

A few notes:

● You’ll probably want to read up on the documentation for the various 
functions you find in the code. Ensure you know the runtimes of each, and 
don’t take anything for granted! 



Part 1: Big-O Analysis

A few notes:

● You’ll probably want to read up on the documentation for the various 
functions you find in the code. Ensure you know the runtimes of each, and 
don’t take anything for granted! 

● Just in case it wasn’t clear, there’s no need to write/modify any code in this 
part of the assignment!



Part 1: Big-O Analysis

A few notes:

● You’ll probably want to read up on the documentation for the various 
functions you find in the code. Ensure you know the runtimes of each, and 
don’t take anything for granted! 

● Just in case it wasn’t clear, there’s no need to write/modify any code in this 
part of the assignment!

● With respect to runtime plots, expect somewhat noisy data plots for 
small-input levels. Additionally, you might see odd spikes at certain points in 
your graphs -- this is probably because your computer had other things 
going on in the background!



Questions about Part 1?



Part 2: Combine

● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.



Part 2: Combine

● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.

● Let’s say that again to be clear -- starting with a 
Vector<Vector<DataPoint>>, your job is to merge the internal sorted 
Vector<DataPoint>’s into a single sorted Vector<DataPoint>.



Part 2: Combine

● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.

● Let’s say that again to be clear -- starting with a 
Vector<Vector<DataPoint>>, your job is to merge the internal sorted 
Vector<DataPoint>’s into a single sorted Vector<DataPoint>.



Part 2: Combine

● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.

● Let’s say that again to be clear -- starting with a 
Vector<Vector<DataPoint>>, your job is to merge the internal sorted 
Vector<DataPoint>’s into a single sorted Vector<DataPoint>.

● For savy algorithmic fiends, what you’ll really be doing is implementing the 
merge part of the recursive sorting algorithm mergesort! Cool beans!



Part 2: Combine

● For part 2 of this assignment, your job is to combine a collection of sorted 
lists into a single sorted list.

● Let’s say that again to be clear -- starting with a 
Vector<Vector<DataPoint>>, your job is to merge the internal sorted 
Vector<DataPoint>’s into a single sorted Vector<DataPoint>.

● For savy algorithmic fiends, what you’ll really be doing is implementing the 
merge part of the recursive sorting algorithm mergesort! Cool beans!

● For those interested, a DataPoint is a little struct that looks like this:



Part 2: Combine

Here’s how we want you to approach this problem:



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

[Above: A collection of sorted sequences being regrouped into 
2 collections of sequences of size roughly k/2.]



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

2. Call your combine() function recursively on both of the Vector’s



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

2. Call your combine() function recursively on both of the Vector’s

As you can see, each call returns a Vector<DataPoint>’s that is sorted!



Part 2: Combine

Here’s how we want you to approach this problem:

1. Assuming you start with a Vector of k sequences, begin by splitting this 
collection into 2 Vector’s of k/2 sequences.

2. Call your combine() function recursively on both of the Vector’s

As you can see, each call returns a Vector<DataPoint>’s that is sorted!

3. Use the merge() algorithm from class to combine these two sorted 
sequences into a single sorted sequence, which you’ll return!



Part 2: Combine

At a high level, here’s a visual of what’s going on:



Part 2: Combine

Some implementation notes:



Part 2: Combine

Some implementation notes:

● You’ll want this code to run in O(n log k) time, where n is the number of 
elements total and k is the number of sequences originally. Think about why 
this is the case.



Part 2: Combine

Some implementation notes:

● You’ll want this code to run in O(n log k) time, where n is the number of 
elements total and k is the number of sequences originally. Think about why 
this is the case.

● If you use the merge() routine from class, recall that removing from the 
front of a Vector does not run in O(1) time. You’re going to need to figure 
out a workaround that preserves the required runtime.



Part 2: Combine

A few more implementation notes:

● Just to be clear -- you’ll be determining ordering based on the weight field of 
the DataPoint struct. Ties can be broken arbitrarily.



Part 2: Combine

A few more implementation notes:

● Just to be clear -- you’ll be determining ordering based on the weight field of 
the DataPoint struct. Ties can be broken arbitrarily.

● The sequences you merge together might not be the same size -- some 
might even be empty! Your code should correctly combine them all.



Part 2: Combine

A few more implementation notes:

● Just to be clear -- you’ll be determining ordering based on the weight field of 
the DataPoint struct. Ties can be broken arbitrarily.

● The sequences you merge together might not be the same size -- some 
might even be empty! Your code should correctly combine them all.

● Before you submit, run the “Time Tests” portion of the GUI and verify visually 
that your code runs in O(n log k) time. After completing part 1 of this 
assignment, we think you’ll know how to identify this runtime on a plot!



Any Questions?


